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Electro-gasdynamic flows in inertia-free approximation and those with allowance 
for inertia forces are investigated. Conditions under which inertia effects are con- 
siderable, are determined. Simple analytical solutions are derived for systems of 
electro-gasdynamic equations that describe the motion of particles in a uniform 
external electric field in the presence of tangential discontinuity of gasdynamic 
velocity at the half-plane boundary. The possibility of reverse current generation, 
i .e .  of the return of particles to the emitter is demonstrated. Obtained results 
are compared with data related to inertia-free approximation. A numerical me-  
thod is developed for solving the complete system of equations of electro-gasdy- 
namics with allowance for particle inertia. The proposed method is used for in- 
vestigating the expansion of electro-gasdynamic streams in channels. Results of 
numerical calculations for various values of controlling parameters are presented. 
Effects of inertia are set appart. 

In many applications (such as electron-ion technology, electrically charged jet  streams 
of aircraft engines) solid or fluid particles in a gasdynamic stream become electricaily 
charged, and it is necessary to investigate two-phase electro=gasdynamic flows. General 
equations that define the electro-gasdynamic flow of a mixture of inert gas, particles, 
and ions appear in [1]. 

If the charged particle inertia is small, two-phase flows can be investigated by the me-  
thod developed for solving equations of electro-gasdynamios with the Ohm law formula- 
ted in the inertia-free approximation [ 2 -  4].  Investigation of such two-dimensional 
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flows has elucidated a number of interesting qualitative relationship pertaining to the 
widening of electric streams, reverse currents, etc. [3, 4]. The analysis of spatial (in the 
simplest case, two-dimensional) flows is much more complex when the inertia of char- 
ged particles is taken into account ; publications in that field are virtually nonexistent. 
Below we present some results of an investigation of two-dimensional electro-gasdyna- 
mic flows with allowance for charged particle inertia. 

1. General equations for the flow of a mixture of inert gas, charged particles, and 
ions (phases 1--3) are complex [1]. For specific applications the system can be consi- 
derably simplified. It is assumed below that phase transition (gas 1 and liquid particles 
2) is absent, the heat flux vector is zero (which does not inhibit heat exchange between 
phases), the difference between chemical potentials of phases is negligible, and that all 
particles are of the same size and carry the same charge. 

The momentum and continuity equations for phases 2 and 3, and the Maxwell equa- 
tions are of the form 

dV~ / dt = k (V  1 - -  V2) / P2 -~ q2 E / P2 + A, A ---- - -  V p / p2 ° (1. 1) 

J3 =- qaV3 = q3 (Vl -~ baE) 

a p 2 / a t  -~ d iv  (P2V~) =- 0, 92 = m2n2 

Oq3 / Ot ~- div  (qsV3) = 0 

4n 
rot E = 0, div E - -  ~ (q3 -~- Zen~) 

k-=r/2p1°na2n2v12cl (B), R : 2p1°v12a/~tr, v12 : I V  1 _  V 2 [ (1.2) 

(k = 6nap.in 2 for R ~ t )  

where V~ and Pi are the phase velocity and density (i = 1, 2, 3); ms and ni are, 
respectively, the mass of a single particle and the particle concentration m phase i, q3 
is the volume electric charge of phase 3, q~ ---- Zen2 is the volume electric charge 
of particles (e is the electron charge, Z is the number of unit charges on a particle) ; 
p~° is the density of the particle material ; ba is the ion mobility ; p is the gasdyna- 
mic pressure; E is the electi2c field, and e is the medium permittivity.Fotmulas (1.2) 
define the law of resistance of particle motion relative to the gas 1. In these formulas 
Pl ° is the true density of gas, ~t x is the coefficient of gasdynamic viscosity, c! : c! (R) 
is the drag coefficient, and R is the Reynolds number. 

In addition to (1. D and (1. 2) the complete system of equations contains the equation 
of momenta for the inert gas 1, equations of energy for all three phases, and the ther- 
modynamic relationships between parameters. The first and second of Eqs. (1. 1) are for- 
mulated on the assumption that only friction forces generated by the inert gas 1 act on 
particles and ions. 

We define such flows in terms of the following dimensionless parameters: 

6 = p ~ / p 2  ° = r n 2 n 2 / p ~ ° ,  N ~ =  p . / p l  (1.3) 

N3 = qaEL / (p~v~), N4 = q~E / (kv,) 
"r = ~p / T (Tp = p 2 1 k ,  T = L I v , ) ,  

where L and p ,  are the characteristic length and the relative velocity of phases 1 and 
2 ,  respectively, and 6 defines the relative volume oCcupied by particles (the volume 
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occupied by ions is assumed negligible). If  8 ~ t ,  the volume of particles can be 
neglected (then Pl = Pl°), and the quantity A in the first of Eqs. (1. 1) is small incom-  
parison with other terms. 

Parameter N~ defines the ratio of the particle friction force acting on gas I to the iner- 
tia forces of that gas (under condition that I (V1 V) V 1 I "~ I (V2 V) Ve I). If  para- 
meter N2 is smaU, the effect of particles on the motion of the inert gas can be neglec- 
ted. And, if in addition the parameter of electro-gasdynamic interaction N3, which is 
the ratio of the friction force exercised by ions 3 on gas / to the inertia terms, is also 
small, the gas flow is determined by conventional equations of gasdynamics. In that case 
the determination of parameters of phases 2 and 3 can be made on the assumption that 
the gasdynamic velocity field is known. 

Parameter • is the ratio of the relaxation time Tp (the time during which velocities 
of particles 2 and gas I are equalized) to the characteristic t ime T of the problem. 
If T ~ i ,  the inertia of particles can be neglected, while for T ~ >  i the friction bet- 
ween particles and gas does not affect the velocity of particles (frozen flow). 

Finally, the quantity JV 4 defines the ratio of electrostatic forces to friction forces in 
the particle equation of motion ( i .  1). 

Let us consider the flow of a mixture for the following parameters: 

a = 10-3cm, L = i 0 c m .  ~t = 1.78"I0-4g/(cm.sec)  (1.4) 
v. = 104 cm/sec,  v t ~ . v . ,  n~ N l 0 4 c m  -3, n 3 ~ i 0 9 c m  -3 

pl ° = 1.225.10 -3 g /cm a, p2 ° =  I g /cm 3, E ~ I 0 4  V/cm 

These values of parameters relate to the flow of a mixture of inert gas, liquid particles 
of i0 ~ radius, and ions through an electric field, for instance, in the region of a corona 
discharge. These values are obtained exparimentally in electro-gasdynamic installations. 

To determine parameters ( i .  3) it is necessary to estimate the electric charge concen- 
trated on a liquid drop. Assuming that drops are charged by the precipitation of ions on 
their surface owing to the generation of a polarization field, for the maximum charge on 
a drop we obtain the estimate (Potenier's formula [5]) 

e Z m a  x ~ 3sE a~ (1. 5) 

Assuming that ions carry a charge e, we obtain 

qa = ens (1. 6) 

Using ( 1 . 3 ) -  (1. 6) we find 

Z---- 2.62.10 e, q 2 =  t u n .  CGSE/cm s (1.7) 

qa = 0 . 4 8 u n .  C G S E / c n ~ ,  6 = 4 . 1 8  10 -5, ~ =  1.25 
N2=3 .42"10  -~, N a = t .3t  10 -a, N 4 = 0 - 1  

where ~ is determined in the Stokes approximation. 
The estimates of parameters show that: 01 ~ Pl v, the quantity ~k J_rt the first of Eqs. 

(1. i)  can be neglected,the inertia of the charged particles is aplxeciable, and that the 
distribution of gasdynamic parameters is determined by conventionai equations of gas- 
dynamics. The latter makes it possible to consider V I, Pl = Pt °, ~tl and b s as known. 
The system of Eqs. ( L  i) and (1. 2) is closed and its solution permits the determination 
of VI, q~, qa and E. 

Stationary electro-gasdynamic equations with conditions (1. 7) are of the form 
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( V 2 V ) V  2 z K (V 1 - -  V~) + ×E; × = Z e  / m2; a, m2, Z ~ const  (1. 8) 

K : 1/2pl°aa2v12c / ( R ) / m 2  ( K  : 6~a~t 1 / m 2  for H ~ - ~ l )  

divq~V2 = 0, d i v q a ( V 1  + b3 E) = 0 

d i v E - -  4 u ( q 2 + q 3 ) / e ,  E = --Vq~ 

where q) is the electric potential. 
When the stream is free of ions, the system of equations defining the motion of an in- 

ert gas and charged particles becomes 
4a 

(V2v)Vo := K(V1 - V2)~- ×E, divq2V2 = 0, 5iF . . . . .  q~ (1.9) 

This system consists of equations of the elliptic kind with respect to the electric po- 
tential and of the hyperbolic kind with respect to velocity V, and charge qo. The tra- 
jectories of charged particles are the characteristics. 

The analysis of systems (1.8) and (1.9) necessitates the following boundary conditions, 

V~ ::- V20 , q~ = q20, q:J = q30, ~ -(Po o n F  °, q := q~+ on F ~° (1.10) 

where F ° is the surface (or line) on which the distribution of parameters at entry tothe 
investigated flow zone is fixed. Only the electric potential is specified on surface F ; 
the distribution of Ve, q~_ and q3 on F ~° is provided by the solution of the problem (the 
gas stream is directed toward F:°). Instead of specifying the potential on surfaces F ° 
and 1 ~° it is po~ible to formulate conditions defined by a combination of the potential 
qD and its derivatives. Only one such relationship needs to be investigated on each sur- 
face. The condition at infinity (only when F ° and F ~ taken as a whole do not form a 
closed surface) must be added to the system of Eqs. (1. 10). 

Certain solutions of system (1. 9), (1. 10) for the drag of particles are presented below 
in the Stokes approximation. 

2 .  F o r m a t i o n  o f  r e v e r t 8  c u t t t n t t .  Let the distribution ofgasdynamic ve- 
locity be of the form (see Fig. 1) 

V~ - ( U - -  const ,  0, 0), y ~ 0 ;  Vl = 0 ,  y > 0  (2.1) 

Positively charged particles at velocity 

Vo V~o = (Uuo, Uvo, 0) (2.2) 

are introduced into the stream along the line x = 0, y ~ 0 .  
The stream flows in the external electric field 

E = ( E . E x ,  E . E ~ .  0), E .  = const  (2.3) 

Ex  ~ c o n s t < 0 ,  E~ = c o n s t > 0  

We aw,me that the electric self-fields are due to the introduction of charged particles 
into the stream and are considerably smallez than the applied fields. In such case the 
velocity distribution V 2 : (Uu,  Uv, O) in region x > 0 is defined by the following 
equations: 

t d u  / d t  : u ~  - -  u,  t d v  / d t  : v~ - -  v (2.4) 

t - -  U / ( L K ) ,  N4  -= E . Z e  / ( m 2 U K )  
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I + u'~, / / <  0 (u~ = N4Ex, voo = N4E,,) 1A oo 

t u L, y > O  

where t and coordinates x and y are related to quantities L / U and L , respectively, 
where L is a characteristic dimension of the flow region. 

Quantity K corresponds to the Stokes law of 

f.O \" 

) \ ; /  -.,'/ 

/ .f/ 
f.O " ' ~  . /  
1.5 

Fig. 1 

$.  The  f l o w  in a 

drag. The problem is defined by five parame- 
ters: T, u0, v0, uoo' and voo. System (2 .4 ) i s  
integrated in quadratures. 

The trajectories of charged particles are shown 
in Figs. i and 2 for "c = t ,  0.5,  and 0 bysolid,  
dash and dash-dot lines, respectively, with u 0 = 
v 0 ---- 0 .25 .  The presence of the retarding e lec-  
tric field causes a bending of trajectories in the 
region y > 0, where gasdynamic velocity is 
absent, and their return to the plane x : 0. 
When the transverse electric field is zero (Fig. 
2) charged particles can reach the plane y = 0 
only in the presence of initial transverse velocity 
(v 0 ~ 0). We then have trajectories 1 and 2 
(for T : 0,5 and 1, respectively) which sepa- 
rate particles that never approach the boundary 
y : 0 from those that reach the boundary and 
then return to the plane x : 0 owing to the 
effect of field E x < 0. 

Parameter T defines the inertia of charged 
particles. For T : 0 the particle trajectories 
are straight lines and the initial conditions are 
immaterial .  

p l a n e  c h a n n e l  w i t h  c o n d u c t i n g  w a l l a .  Let us 
consider the stationary motion of charged particles in a semi-infinite space between two 
parallel grounded walls y --~ -4- L / 2, x ~ 0 .  The velocity of gas flowing in that re- 

gion is V z = ( U =  const ,  0, 0). 
Charged particles are introduced into the gas stream along the line x = 0 ,  [y [~  h°/2, 

where h ° < L,  which is a grid electrode at potential q~ = 0 .  Constant density and 
initial velocity of charged particles q ~ 0 and V 2 = (Uu o = const ,  0, 0) are spe- 
cified in this section of the electrode. Since the problem is symmetric with respect to 
the axis y = 0, only the channel upper half y ~ 0 is considered. 

Unlike in the problem investigated in Sect. 2, the particles are subjected to (induced) 
electric self- fields. 

Thus the system of Eqs. (1.9) and (1. 10) that determines particle velocity, the electric 
volume charge, and also the electric fields is of the form 

, u - ~ + v ~ - ~  = i - - u - - o - - ;  , * u-~-;+v-FF = - - v - - -  G 
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Oq Oq (Ou Or) (3.2)  
U ~ x  + V ~y := - -  q - ~  + T~y , A ~ = - - q  

= rn2U / (6r~aL~h) 

Equations (3 .1)  and (3 .2)  are presented in dimensionless form with the foUowing char- 
acteristic quantities (denoted by an asterisk): 

x ,  : y ,  : L ,  v ,  : U,  ¢p, = U L  / b , ,  E ,  : U / b ,  (3.3) 

q, = eU / (4:~Lb,), b, = ×rn~ / (6na~h) 

The boundary conditions for this system are 

y =  1/~, x > O :  q~=O; x = O :  q ) =  O; x - + o o  :q~-+O (3.4) 
y % h / 2 ,  x =  O: q =  [~, u = u0, v =  0 

y = 0 ,  x > O : & p / O y = O  

The problem is defined by four parameters: T, u0, h - -  h ° / L and [~=qo4nb.L / (eU). 
The formulated problem is solved numerically by the method of successive approxi- 

mations. It consists essentially of the determination of potential ¢p = ~p(~+l) (z, y) in the 
(e -t- t) -st approximation by the second of Eqs. (3 .2)  on the basis of the distribution 
q = q(~) (z, y) in the ~- th  approximation. From Eqs. (3.1)  with the use of ~(~+~) we 
obtain u (u+~r and v (~+1) . 

0 
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-0.0 

w,e  J 0.~ 0.6 
! 
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Fig. 2 

Finally, from the first of  Eq$. (3.2)  we determine q(~+l). When I q(~) - -  q(k+l) i ~ eq 
(% , ~  1 is specified) the derivation of solution is considered completed. 

The second of Eq. (3 .2)  is solved by the Seidel method of successive displacements 
with the speeding-up formula of L. A. Liustemik and subdivision of the integration region 
into rectangular cells. Equation (3 .1)  and the first of Eqs. (3.2)  are integrated by the 
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method of characteristics ; the boundary of the zone containing a charge is determined 
by the method of straight characteristics, while u v and a at inner nodes of the compu- 
tation grid are obtained with the use of "inverse" characteristics. 

The characteristics are represented by the charge streamlines 

dy l d= : ~ l u (3.5) 

The related characteristic relationships for u, v and q are of the form 

d x  - -  "¢u t - - u - - ~ x  ' dx  - -  "ru - - v - -  

dq q ( O u  0~)  
d x = - -  z'--7 -ffTx + 

Equatiom (3.5) and (3.6) are solved at each stage by the use of the iteration process. 
Individual ordinary differential equations are integrated by the Euler method followed 
by recalculation. 

Below we present the results of computations for h = 0.4, T : i ,  ~ = 2 and 

0.4 ~< Uo ~ t.8. 

O./i ...~.~ - .....- _ ~ - ~  _. 

0"20 O~ I 1.5 

@Hr. 3 

0.25 

o.a 

Fig. 4 

/.0 aC 

The electric stream boundary y = F (y) that separates region y .~  r (x) with 
charged particles from region y ~ r (x) where charges are absent, is shown in Fig. 3 
for u 0 = 0.4, 0.8,  1.2, 1.6 and 1.8 by solid lines, and for h = 0.6 by dash lines. 

Downstream the electric streams widen and eventually join the channel wall, on which 
their particles are precipitated. The deflection of charged particles toward channel wails 
is caused by the action of induced transverse fields. If the moving particles are not char- 
ged, the flow is one-dimemional and the stream containing particles is of constant cross 
section. An increase of parameter ~ results in tim increase of induced electric fields and 
a corresponding increased deflection of particles toward the stream periphery. 

Equipotential lines (uo = 1, h : -  0.4)which give an idea of the effect of electric 
forces on charged particles are shown in Fig. 4 in the plane of flow. The point correspon- 
ding to the highest q) lies on the stream axis at a distance, of the order of the channel 



width, from the initial cross section. As seen in Fig. 3, the initial increase of parameter 
u 0 results in a more intensive widening of the stream, because of the increase of the 
volume charge introduced into it and the consequent increase of the transverse electric 
field. There exists a certain u0* such that for u0 ~ u0* the electric stream begins to 

contract, which means that the initial longi- 

9 [  - ~ ' ~ - .  I g l tudinal momentum begins to have a greater 
i , • effect on the motion of charges. 

, ~ ! The distribution of q (x) along the stream 

0.5 i x "~ i.O LO x 

Fig. 5 Fig. B 

axis is shown in Fig. 5 for several values of u 0. It is seen that function q (z) is general- 

ly nonmonotonic. The region of decreasing (increasing) q along the initial section cor- 
responds to acceleration (deceleration) of particles. 

Distribution of particle longitudinal velocity along the channel axis for the same va- 
lues of parameters are shown in Fig. 6 by solid lines. Similar curves for ~ ---- 0 (unchar- 
ged particles) are shown there by dash lines. The characteristic asymptotic tendency of 
u to the velocity of gas can be seen in the diagram. For ~ ~ 0 the change of particle 
velocity is nonmonotonie owing to the effect of the longitudinal electric field (see Fig. 4), 
Along the initial section it has a decelerating effect, while further downstream the velo- 
city is accelerated. The over-a]/effect  depends on the relation between friction and 
electric forces. 

We note in concluding that the present investigation is a generalization of results ob- 
tained in [2 -- 4] where the particular case of 1: : -  0, which corresponds to the disregard 
of charged particle inertia, was considered. That condition is valid for light particles 

and ions. 
The allowance for inertia results in a "lag" in the establishment of equilibrium values 

of the dynamic characteristics of gas. This explains the peculiar deformations of the 
electric stream shown above. 
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Approximate equations are derived for small unsteady perturbations of a constant 
sonic stream and of quiescent gas. These equations, unlike the equation used for 
defining unstable transonic flows of gas, provide a correct definition of perturba- 
tion propagation from a point source in all directions [1]. 

1. Let us consider potential flows of perfect gas. Such flows are defined by the equa- 
tion 

(4h -4- V~)t + ~ 2 ~ x x  4- ~ 2 ~  4- ~ . - ~ z ,  + 2 ~ x ~ u ~ x .  + (1. 1) 

2 ~ z ~ =  + 2~uOz~w = a ~ ( @ ~  + ¢Dy~ -4- ~, , )  

t 2 a2~ .px_ l~p (x_ l ) /×_~  u+t2  (~¢-- t ) (  * t 4 -  T V ) 

V = (O~ ~ + Ov ~ 4- Oz2) '/' 
where ~ ,  x, y, z, t, V, a, P and p are, respectively, the dimensionless velocity pe- 
tential, Cartesian coordinates, time, velocity of gas, speed of sound, pressure and density 
(related, respectively, to a,*to, a . to ,  to, a . ,  P .  and p . ,  where the asterisk denotes 
parameters of the sonic stream u = ~ , ,  = a ,  and Ou = 0). 

Let us consider transonic flows of gas. for which it is possible to use the linear theory 

(I9 : X 4- "~(I) 1 4- ~2(I)2 4- . . . ,  (I)ltt 4- 2fl)lxt = (~}lYl/ 4- ( ~ l z z  (1 .2)  

However the linear theory has some shortcomings. The linear expansion (1. 2) contains 
various irregularity regions for which the order of the second term ~ 2 ~  is the same 
as of the first ~tD x. 

As an example, we present two such expansions for one-dimensional flows 

* =-- x 4- 7 ~  (v) 4- 7 '  [ ~¢+1 ] s ~ "  (v) x 4- ~(v)  + . . . ,  (1.3) 

~---- 2 t - - x  

¢ (1.4) 


